Principal Investigator

吴思
计算神经科学、类脑计算

联系电话:
通信地址: 北京市海淀区颐和园路5号, 邮编 100871
电子邮件:

 

研究兴趣:

以数学模型和计算机仿真来构建神经系统的计算模型,解析神经系统处理信息的一般性原理,并在此基础上发展类脑的人工智能算法。目前开展的课题包括:视觉信息处理的动态交互机制、神经信息表达的正则化网络模型、神经突触短时程可塑性的计算功能、多模态信息处理、神经形态计算的模型等。

 

代表性科研论文:

  1. Xiaohan Lin#, Xiaolong Zou#, Zilong Ji, Tiejun Huang, Si Wu*, Yuanyuan Mi*, A brain-inspired computational model for spatio-temporal information processing, Neural Networks, 2021, 143:74-87.
  2. W. Zhang, H. Wang, A. Chen, Y. Gu, T. S. Lee, KYM Wong*, S. Wu* (2019). Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. eLife 8: e43753.
  3. X. Liu, X. Zou, Z. Ji, G. Tian, Y. Mi, T. Huang, KYM Wong, S. Wu* (2019). Push-pull feedback implements hierarchical information retrieval efficiently. NeurIPS, 2019.
  4. W.H. Zhang, S. Wu, B. Doiron, T.S. Lee. A Normative Theory for Causal Inference and Bayes Factor Computation in Neural Circuits. NeurIPS, 2019.
  5. Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang, Guanrui Wang, Zhe Zou, Zhenzhi Wu , Wei He, Feng Chen, Ning Deng, Si Wu, Yu Wang, Yujie Wu, Zheyu Yang, Cheng Ma, Guoqi Li, Wentao Han, Huanglong Li, Huaqiang Wu, Rong Zhao, Yuan Xie, Luping Shi (2019) . Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature v. 572; https://doi.org/10.1038/s41586-019-1424-8. (连续吸引子模型应用在天机芯片上).
  6. Xiaolan Wang, C.C. Alan Fung, Shaobo Guan, Si Wu*, Michael E. Goldberg, Mingsha Zhang* (2016). Perisaccadic Receptive Field Expansion in the Lateral Intraparietal Area. Neuron, 90(2): 400–409.
  7. W. Zhang, A. Chen, M. Rasch* and S. Wu* (2016). Decentralized multi-sensory information integration in neural systems. The Journal of Neuroscience, 36(2):532-547.
  8. W. Zhang, H. Wang, KYM Wong, S. Wu* (2016). “Concurrent” and “Opposite” Neurons: Sisters for Multisensory Integration and Segregation. NeurIPS, 2016.
  9. Wu, S*, Wong, KYM., Fung, CCA., Mi, Y., and Zhang, W. (2016). Continuous attractor neural networks: candidate of a canonical model for neural information representation. F1000 Invited Review, 66(16), 209-226.
  10. Y. Yan, M. Rasch, M. Chen, X. Xiang, M. Huang, S. Wu and W. Li (2014). Perceptual training continuously refines neuronal population codes in primary cortex. Nature Neuroscience17: 1380–1387. doi:10.1038/nn.3805.
  11. Y. Mi, C. C. Alan Fung, K. Y. Michael Wong, S.Wu*(2014).Spike Frequency Adaptation Implements Anticipative Tracking in Continuous Attractor Neural Networks. NeurIPS, 2014.
  12. Y. Mi , X. Liao , X. Huang , L. Zhang , W. Gu, G. Hu* and S. Wu* (2013). Long-Period Rhythmic Synchronous Firing in a Scale-Free Network. Proc. Natl. Acad. Sci. USA 110:E4931-4936.
  13. L. Xiao, M. Zhang, D. Xing, P-J. Liang and S. Wu* (2013). Shift of Encoding Strategy in Retinal Luminance Adaptation: from Firing Rate to Neural Correlation. Journal of Neurophysiology 110:1793-1803. doi:10.1152/jn.00221.2013.
  14. Tsodyks, M. and Wu, S* (2013). Short-term synaptic plasticity. Scholarpedia, 8(10):3153.
  15. C. C. Fung, K. Y. Michael Wong, H. Wang and S. Wu* (2012). Dynamical Synapses Enhance Neural Information Processing: Gracefulness, Accuracy and Mobility. Neural Computation 24 (5): 1147-1185, 2012.
  16. C. C.Fung, K.Y.Michael Wong and S. Wu* (2010). A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks. Neural Computation, v.22, p.752-792.
  17. C. C. Fung, K. Y. Michael Wong, H. Wang and S.Wu* (2010). Attractor Dynamics with Synaptic Depression. NeurIPS 2010.
  18. D. Chen, S. Li, Z. Kourtzi and S. Wu* (2010). Behavior-constrained support vector machines for fMRI data analysis. IEEE Trans. Neural Networks. v. 21, 1680-1685.
  19. C. C.Fung, K.Y.Michael Wong and S. Wu* (2008). Tracking Changing Stimuli in Continuous Attractor Neural Networks. NeurIPS 2008.
  20. S. Wu and S. Amari (2005). Computing with Continuous Attractors: Stability and On-Line Aspects. Neural Computation, v.17, 2215-2239.
  21. S. Wu and K. Y. Michael Wong and B. Li. (2002). A Dynamic Call Admission Policy for Precision QoS Guarantee Using Stochastic Control for Mobile Wireless Networks. IEEE/ACM Transactions on Networking, v.10, p.257-271.
  22. S. Wu, S. Amari and H. Nakahara. (2002). Population Coding and Decoding in a Neural Field: A Computational Study. Neural Computation, v14, no.5, p.999-1026.
  23. S. Wu and S. Amari. (2002). Neural Implementation of Bayesian Inference in Population Codes. NeurIPS 2002.
  24. S. Wu, H. Nakahaara, N. Murata and S. Amari. (2000). Population Decoding Based on an Unfaithful Model. NeurIPS 2000.
  25. S. Amari and S. Wu (1999). Improving Support Vector Machine Classifiers by Modifying Kernel Functions. Neural Networks, v.12, p.783-789, 1999.

计算神经科学与类脑计算的开源软件平台:

BrainPy:https://github.com/PKU-NIP-Lab/BrainPy