Prof. Liangyi Chen: Hybrid reconstruction of the physical model with the deep learning that improves structured illumination microscopy
Abstract
Structured illumination microscopy (SIM) has been widely used in live-cell superresolution (SR) imaging. However, conventional physical model-based SIM SR reconstruction algorithms are prone to artifacts in handling raw images with low signal-to-noise ratios (SNRs). Deep-learning (DL)-based methods can address this challenge but may lead to degradation and hallucinations. By combining the physical inversion model with a total deep variation (TDV) regularization, we propose a hybrid restoration method (TDV-SIM) that outperforms conventional or DL methods in suppressing artifacts and hallucinations while maintaining resolutions. We demonstrate the performance superiority of TDV-SIM in restoring actin filaments, endoplasmic reticulum, and mitochondrial cristae from extremely low SNR raw images. Thus TDV-SIM represents the ideal method for prolonged live-cell SR imaging with minimal exposure and photodamage. Overall, TDV-SIM proves the power of integrating model-based reconstruction methods with DL ones, possibly leading to the rapid exploration of similar strategies in high-fidelity reconstructions of other microscopy methods.
Original link: DOI : 10.1117/1.APN.2.1.016012